Temporal gliosarcoma: case report and review of literature

Amit Agrawal¹, Vissa Shanthi², Baddukonda Appala Ramakrishna³, Kuppili Venkata Murali Mohan³

¹Professor of Neurosurgery, Department of Neurosurgery, Narayana Medical College Hospital, Chinthareddypalem, Nellore, Andhra Pradesh (India)
²Associate Professor of Pathology, Department of Pathology, Narayana Medical College Hospital, Chinthareddypalem, Nellore, Andhra Pradesh (India)
³Professor of Pathology, Department of Pathology, Narayana Medical College Hospital, Chinthareddypalem, Nellore, Andhra Pradesh (India)

Abstract: First characterized by Stroebe, the gliosarcomas are highly malignant and rare primary tumor of the brain composed of neoplastic glial cells in association with spindle cell sarcomatous elements (biphasic tissue patterns). In spite of being recognized as two different pathologies studies have not shown any significant differences between gliosarcoma and glioblastoma with regard to age, sex, size, clinical presentation, and median survival. In summary, gliosarcoma is an aggressive tumor with a propensity to recur and re-grow with poor outcome. Future studies are needed to understand the true pathology of these biphasic tumors.

Key words: Gliosarcoma, radiotherapy, survival, temporal gliosarcoma

Introduction

First characterized by Stroebe, (1) the gliosarcomas are highly malignant and rare primary tumor of the brain composed of neoplastic glial cells in association with spindle cell sarcomatous elements (biphasic tissue patterns). (1-9) World Health Organization characterizes primary gliosarcoma as a grade 4 neoplasm and a variant of glioblastoma multiform (10, 11) and gliosarcomashave an incidence of 1.8%-2.8% of that of glioblastomas. (5, 12, 13)

Case report

A 50-year female presented with fever of 20 days duration, right sided headache and right hypochondriac pain of similar duration. She lapsed into altered sensorium three hours before presenting to emergency room and had two episodes of vomiting. She lapsed into altered sensorium after vomiting. Her general and systemic examination was unremarkable. Neurologically Glasgow coma scale (GCS) was E1V1M4, pupils were bilateral equal and reacting. She was moving all four limbs equally to deep painful stimuli. Pulse rate was
56 per minute regular. The patient was intubated in emergency and ventilated. Computerized scan (CT) of brain revealed a well-circumscribed heterogeneous iso- to hyperdense lesion in the right temporal lobe with significant peri-lesional edema, mass effect and midline shift (Figure 1). Total leucocytes count was 26,500 per mm3 (N-86, L-09, E-01, 04. ESR was 36 mm in 1st hour. She was started on anti-edema measures. She underwent emergency right temporal craniotomy and total excision of the lass. The mass was avascular and firm to hard in consistency (Figure 2). Based on clinical features and intra-operative findings a diagnosis of tuberculoma was suspected.

Figure 1 - CT scan brain plain showing a heterogeneously lesion in the right temporal lobe with significant peri-lesional edema, mass effect and midline shift

Figure 2 - Intra-operative image showing (A) well defined mass lesion in right temporal lobe, (B) total excision of the mass (see inset)

Figure 3 - Following up CT showing complete removal of the mass lesion

Figure 4 - (A) Spindle shaped tumor cells with one foci showing necrosis and pseudopalisading pattern (H&E,X100), (B) Tumor with spindle shaped tumor cells, multinucleated tumor giant cells and congested blood vessels (H&E, X100), (C) Tumor with spindle shaped tumor cells and multinucleated tumor giant cells (H&E, X100), (D) Spindle shaped tumor cells (H&E,X100), (E) Tumor cells with vacuolated cytoplasm (H&E, X100) and (F) Spindle shaped tumor cells with vesicular nuclei, prominent nucleoli and an atypical mitotic figure (H&E, X400)
In addition to broad spectrum antibiotics she was stated on ATT. Postoperative CT showed total excision of the tumor and reduction in cerebral edema, mass effect and midline shift (Figure 3). Multiple section studies showed lesion composed of spindle shaped cells arranged in fascicles. In some foci they are arranged irregularly. The tumor cells are having oval elongated vesicular nuclei with prominent nucleoli and eosinophilic cytoplasm. In some foci tumor cells show vacuolated cytoplasm. Few foci show tumor cells having eccentrically placed nuclei with abundant eosinophilic cytoplasm. Mononucleated and multinucleated tumor giant cells are seen. Numerous atypical mitotic figures are noted. Occasional foci show necrosis and pseudo-palisading pattern of arrangement of tumor cells. Glial component was seen in some foci (Figures 4 and 5). The patient received radiotherapy and chemotherapy. She is doing well at follow up.

Discussion

Gliosarcomas are usually located in the cerebral cortex (the temporal, frontal, parietal, and occipital lobes in decreasing frequency), most common in adults males in the fourth to sixth decades of life. (3, 5, 8, 12-16) Clinically these patients present with features of raised intracranial pressure due to an expanding space occupying lesion (i.e. headache, hemiparesis, seizures, and cognitive decline). (15, 17) The pathogenesis of gliosarcoma has been a topic of controversy and various theories have been proposed (1) the sarcomatous component originates from neoplastic transformation of hyperplastic blood vessels found in high-grade glioma, and (2) the recent theory suggests monoclonal origin of sarcomatous component originating via aberrant mesenchymal differentiation of the malignant glioma. (15, 18-20) Histologically, the gliosarcoma is composed of 2 distinct malignant cell populations (biphasic tissue pattern), one component being gliomatous (heterogeneous infiltrative areas with hemorrhage and necrosis and stains for GFAP compatible with glioblastoma) and the other with malignant mesenchymal differentiation (a firm discrete mass compatible with sarcoma). Wrinkler, 2000 #179} (3, 19-23) The presence of identical genetic alterations in both gliomatous and sarcomatous components strongly supports monoclonal origin of gliosarcomas, however the absence of amplification/over expression of the EGFR gene, a genetic hallmark of primary glioblastomas. 24 Appearance of gliosarcoma on CT is extremely variable and these lesions generally appear as a well-defined hyperdense mass with heterogeneous or ring enhancement due to a fibrous component with intense peritumoral edema and necrotic areas. (13, 15, 25-28) On magnetic resonance imaging (MRI) gliosarcoma appear as a heterogeneous mass both in T1- and T2-
weighted images with irregular contrast enhancement with marked peritumoral edema (15, 25, 26) Management of gliosarcoma includes maximum surgical decompression with post-operative radiotherapy. (7, 9, 15, 29) The possible role of chemotherapy in GS is still undefined and could be explored in future studies. (7, 8, 13, 15, 20, 30) Metastases has been reported in up to one third of cases, mainly to the lungs, pleura, lymph nodes, bone marrow, liver, spinal cord, kidney and peripancreatic areas. (15, 17, 25) In spite of being recognized as two different pathologies studies have not shown any significant differences between gliosarcoma and glioblastoma with regard to age, sex, size, clinical presentation, and median survival. (3, 7, 8, 14-16, 19, 20, 31) The predominance of the sarcomatous component has been shown to be associated with a better prognosis and a greater recurrence-free interval. (19)

In summary, gliosarcoma is an aggressive tumor with a propensity to recur and re-grow with poor outcome. Future studies are needed to understand the true pathology of these biphasic tumors.

References


